Middle East Technical University
 Department of Mechanical Engineering
 ME 413 Introduction to Finite Element Analysis

Chapter 2
 Introduction to FEM

These notes are prepared by
Dr. Cüneyt Sert
http://www.me.metu.edu.tr/people/cuneyt
csert@metu.edu.tr

Disadvantages of Ritz and MWR

- They provide global solutions, i.e. a single approximate solution is valid over the whole problem domain.
- Difficult to capture complicated 2D and 3D solutions on complex domains.
- Not suitable to solve problems with multiple materials.
- Approximation function selection is
- problem (DE, BC, domain size) dependent. Difficult to automate.
- practically impossible for complex 2D and 3D geometries. See the problem below.
- NOT unique.

FEM vs. Ritz

- Finite Element Method (FEM)
- does NOT seek a global solution
- divides the problem domain into elements of simple shapes
- works with simple polynomial type approximate solutions over each element

- weight function selection is the same

Our First FE Solution

e.g. Example 2.1 Solve the following problem using FEM

$$
\begin{aligned}
-\frac{d^{2} u}{d x^{2}}-u & =-x^{2}, \quad 0<x<1 \\
u(0) & =0, \quad u(1)=0
\end{aligned}
$$

- This was already solved in Chapter 1.
- Exact solution is

$$
u_{\text {exact }}=\frac{\sin (x)+2 \sin (1-x)}{\sin (1)}+x^{2}-2
$$

Our First FE Solution (Example 2.1) (cont'd)

- This solution will be very similar to previous Ritz solutions.
- In Chapter 3 we'll make it more algorithmic and easy to program. This will allow us to write our first FE code.
- Following 5 node $(\mathrm{NN}=5)$ and 4 element $(\mathrm{NE}=4)$ mesh (grid) will be used.

- This is a mesh of linear elements (elements that are defined by 2 nodes).
- This mesh is uniform, i.e. element length $h^{e}=0.25$ is constant.

Our First FE Solution (Example 2.1) (cont'd)

- With linear elements we'll obtain a piecewise linear solution

- FE solution is linear over each linear element.
- This solution is C^{0} continuous, i.e. it is continuous at element interfaces, but its $1^{\text {st }}$ derivative is not.
- u_{j} 's are the nodal unknown values. The ultimate task is to calculate them.
- u_{1} and u_{5} are specified as EBCs. They are actually known.

Our First FE Solution (Example 2.1) (cont’d)

- FE solution of the previous slide can be written as

$$
u^{h}=\sum_{j=1}^{N N} u_{j} \phi_{j}
$$

$N N$: Number of nodes
$u_{j}: \quad$ Nodal unknowns
$\phi_{j}(x)$: Approximation functions

- Same form as Ritz.
- But now unknowns are not just arbitrary numbers. They have a physical meaning, they are the unknown values (e.g. temperatures) at the mesh nodes.
- In FEM ϕ_{0} is not necessary.
- To have a piecewise linear u^{h} each ϕ_{j} should be linear.
- The above sum should provide nodal unknown values at the nodes. This is satisfied if the following Kronecker-Delta property holds

$$
\phi_{j}\left(x_{i}\right)=\left\{\begin{array}{ll}
1 & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j
\end{array} \quad, \quad i, j=1,2, \ldots, N N\right.
$$

Our First FE Solution (Example 2.1) (cont’d)

- Following approximation functions will work

- These are Lagrange type approximation functions.
- They make sure that the solution is continuous across elements, but not its first derivative.
- They have Kronecker-Delta property.
- They have local support, i.e. nonzero only over at most two elements.

Our First FE Solution (Example 2.1) (cont’d)

Our First FE Solution (Example 2.1) (cont’d)

- FEM uses weak form of the DE (same as Ritz) (u is used instead of u^{h} for clarity)

$$
\begin{gathered}
R=-\frac{d^{2} u}{d x^{2}}-u+x^{2} \\
\int_{0}^{1} w R d x=0 \rightarrow \int_{x=0}^{1}\left(-w \frac{d^{2} u}{d x^{2}}-w u+w x^{2}\right) d x=0 \\
\int_{0}^{1} \frac{d w}{d x} \frac{d u}{d x} d x-\left[w \frac{d u}{d x}\right]_{0}^{1} \\
\text { Weak form : } \quad \int_{0}^{1}\left(\frac{d w}{d x} \frac{d u}{d x}-w u+w x^{2}\right) d x-\left[w \frac{d u}{d x}\right]_{0}^{1}=0
\end{gathered}
$$

Our First FE Solution (Example 2.1) (cont’d)

- We need to write the weak form $N N$ times with $N N$ different w^{\prime} s.
- In Galerkin FEM (GFEM) weight function selection is the same as Ritz

$$
w_{i}=\phi_{i}, \quad i=1,2, \ldots, N N
$$

$1^{\text {st }}$ eqn $\left(w=\phi_{1}\right): \int_{0}^{1}\left(\frac{d \phi_{1}}{d x} \frac{d u}{d x}-\phi_{1} u+\phi_{1} x^{2}\right) d x-\left.(\underbrace{\phi_{1}} \frac{d u}{d x})\right|_{x=1}+\underbrace{\left.(\underbrace{\phi_{1}}_{1} \frac{d u}{d x})\right|_{x=0}=0}=0$
$2^{\text {nd }}$ eqn $\left(w=\phi_{2}\right): \int_{0}^{1}\left(\frac{d \phi_{2}}{d x} \frac{d u}{d x}-\phi_{2} u+\phi_{2} x^{2}\right) d x-\left.\left(\phi_{0}^{\phi_{2}} \frac{d y}{d x}\right)\right|_{x=1}+(\left.\underbrace{\left.\phi_{2} \frac{d u}{d x}\right)}_{0}\right|_{x=0}=0$
$3^{\text {rd }}$ eqn $\left(w=\phi_{3}\right): \int_{0}^{1}\left(\frac{d \phi_{3}}{d x} \frac{d u}{d x}-\phi_{3} u+\phi_{3} x^{2}\right) d x-\left.\left(\frac{\phi_{3}}{\frac{d u}{d x}}\right)\right|_{x=1}+\left.(\underbrace{\phi_{3}}_{0} \frac{d u}{d x})\right|_{x=0}=0$
$4^{\text {th }}$ eqn $\left(w=\phi_{4}\right): \int_{0}^{1}\left(\frac{d \phi_{4}}{d x} \frac{d u}{d x}-\phi_{4} u+\phi_{4} x^{2}\right) d x-\left.\left(\sum_{8}^{\phi_{4}} \frac{d u}{d x}\right)\right|_{x=1}+\left.(\underbrace{\phi_{4}}_{\delta} \frac{d u}{d x})\right|_{x=0}=0$
$5^{\text {th }}$ eqn $\left(w=\phi_{5}\right): \int_{0}^{1}\left(\frac{d \phi_{5}}{d x} \frac{d u}{d x}-\phi_{5} u+\phi_{5} x^{2}\right) d x-(\underbrace{\left.\phi_{5} \frac{d u}{d x}\right)\left.\right|_{x=1}+\left.\left(\sum_{0}^{\phi_{5}} \frac{d y}{d x}\right)\right|_{x=0}=0000}_{1}$

Our First FE Solution (Example 2.1) (cont’d)

- Integrals
- are easier to evaluate over each element separately.
- are nonzero only over certain elements
- For example $3^{\text {rd }}$ eqn's integral is

$$
I_{3}=\int_{0}^{1}\left(\frac{d \phi_{3}}{d x} \frac{d u}{d x}-\phi_{3} u+\phi_{3} x^{2}\right) d x
$$

which is nonzero only over $\mathrm{e}=2$ and $\mathrm{e}=3$ because ϕ_{3} is nonzero only over $\mathrm{e}=2$ and $\mathrm{e}=3$.

$$
\begin{gathered}
I_{3}=\int_{\Omega^{2}}(\ldots \ldots \ldots \ldots) d x+\int_{\Omega^{3}}(\ldots \ldots \\
u=\sum u_{j} \phi_{j}=\underbrace{u_{2}(2-4 x)+u_{3}(4 x-1)}_{\text {Simplified sum over } \mathrm{e}=2}
\end{gathered}
$$

$$
w=\phi_{3}=3-4 x
$$

$$
u=\sum u_{j} \phi_{j}=\underbrace{u_{3}(3-4 x)+u_{4}(4 x-2)}_{\text {Simplified sum over e}=3}
$$

Our First FE Solution (Example 2.1) (cont’d)

- I_{3} can be evaluated in MATLAB as

Part of Example2_1.m code

```
syms x u1 u2 u3 u4 u5;
% First calculate the part of the integral over the 2nd element.
w = 4*x-1; % w = Phi3 and it is equal to 4x-1 over e=2.
dwdx = diff(w, x);
u = u2*(2-4*x) +u3*(4*x-1); % This is what u is over e=2
dudx = diff(u, x);
part1 = int(dwdx*dudx - w*u + w*x^2, x, 0.25, 0.5);
% Now calculate the part over the 3rd element.
w = 3-4*x; % w = Phi3 and it is equal to 3-4x over e=3.
dwdx = diff(w, x);
u = u3*(3-4*x) + u4*(4*x-2); % This is what u is over e=3
dudx = diff(u, x);
part2 = int(dwdx*dudx - w*u + w*x^2, x, 0.5, 0.75);
% Add two parts to get the integral of the 3rd equation.
I3 = part1 + part2
```


Our First FE Solution (Example 2.1) (cont'd)

- The result for I_{3} is: $-\frac{97}{24} u_{2}+\frac{47}{6} u_{3}-\frac{97}{24} u_{4}+\frac{25}{384}$
- Other integrals are calculated in Example2.1v2.m MATLAB code (see the next slide).
- The resultant 5 equations are

Our First FE Solution (Example 2.1) (cont’d)

```
syms x u1 u2 u3 u4 u5 Phi I;
```

Example2_1v2.m code (2 $2^{\text {nd }} \&$ simpler version)

```
% Phi(i,j) is the i-th approx. funct. over element j
```

% Phi(i,j) is the i-th approx. funct. over element j
(2 nd \& simpler version)
Phi (1,1) = 1-4*x;
Phi (2,1) = 4*x; Phi (2,2) = 2-4*x;
Phi (3,2) = 4*x-1; Phi (3,3) = 3-4*x;
Phi (4,3) = 4*x-2; Phi (4,4) = 4-4*x;
Phi (5,4) = 4*x-3;
coord = [0, 0.25, 0.5, 0.75, 1];
for i=1:5 % Integral loop
I(i) = O; % Initialize the i-th integral to zero.
for e=1:4 % Element loop
w = Phi(i,e);
dwdx = diff(w, x) ;
u = u1*Phi (1,e) + u2*Phi (2,e) + u3*Phi (3,e) + u4*Phi (4,e) + u5*Phi (5,e);
dudx = diff(u, x) ;
I(i) = I(i) + int(dwdx*dudx - w*u + w*x^2, x, coord(e), coord(e+1));
end
end

```

\section*{Our First FE Solution (Example 2.1) (cont’d)}

Stiffness matrix
\(N N \times N N\)


Nodal unknown
vector
\[
N N \times 1
\]
- This system has 5 equations for 5 unknowns.
- \(u_{1}\) and \(u_{5}\) are known, but \(Q_{1}\) and \(Q_{5}\) are unknown.
- As a rule, if the PV is known at a boundary, corresponding SV is unknown, and vice versa.
- Note that \(Q_{1}\) includes a minus sign, which can be thought as an indicator for boundary normal direction.
- At \(x=0\), boundary outward normal is in \(-x\) direction \(\rightarrow Q_{1}=\left(-\frac{d u}{d x}\right)_{x=0}\)
- At \(x=1\), boundary outward normal is in \(+x\) direction \(\rightarrow Q_{5}=\left(+\frac{d u}{d x}\right)_{x=1}\)

\section*{Our First FE Solution (Example 2.1) (cont'd)}
- In practice we first want to solve for the unknown \(u\) 's, but not \(Q\) 's.
- For this we apply reduction to the \(N N \times N N\) system and drop the \(1^{\text {st }}\) and \(5^{\text {th }}\) equations, because \(u_{1}\) and \(u_{5}\) are known.
\[
\left[\begin{array}{llll}
K_{11} & K_{12} & K_{13} & K_{14} \\
\hline K_{21} \\
K_{31} \\
K_{41}
\end{array}\right\}\left[\left.\begin{array}{llll}
K_{22} & K_{23} & K_{24} \\
K_{32} & K_{33} & K_{34} \\
K_{42} & K_{43} & K_{44}
\end{array} \right\rvert\,, \begin{array}{l}
K_{25} \\
K_{25} \\
K_{51}
\end{array} K_{52}\right.
\]
- The reduced system is \(3 x 3\)
\[
\left[\begin{array}{lll}
K_{22} & K_{23} & K_{24} \\
K_{32} & K_{33} & K_{34} \\
K_{42} & K_{43} & K_{44}
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right\}=\left\{\begin{array}{l}
F_{2}-K_{21} u_{1}-K_{25} u_{5} \\
F_{3}-K_{31} u_{1}-K_{35} u_{5} \\
F_{4}-K_{41} u_{1}-K_{45} u_{5}
\end{array}\right\}+\left\{\begin{array}{l}
Q_{2} \\
Q_{3} \\
Q_{4}
\end{array}\right\}
\]

\section*{Our First FE Solution (Example 2.1) (cont'd)}
- Reduced system for this problem is
\[
\begin{array}{r}
{\left[\begin{array}{ccc}
\frac{47}{6} & -\frac{97}{24} & 0 \\
-\frac{97}{24} & \frac{47}{6} & -\frac{97}{24} \\
0 & -\frac{97}{24} & \frac{47}{6}
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{7}{384} \\
-\frac{25}{384}-0-0 \\
-\frac{55}{384}-0-0
\end{array}\right]+\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}} \\
\text { - Solving this system gives }\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right\}=\left\{\begin{array}{l}
-0.0232 \\
-0.0405 \\
-0.0392
\end{array}\right\} \quad \begin{array}{l}
u_{1}=0 \\
u_{5}=0
\end{array}
\end{array}
\]
- Exact values are \(\left\{\begin{array}{l}u_{2} \\ u_{3} \\ u_{4}\end{array}\right\}_{\text {exact }}=\left\{\begin{array}{l}-0.0234 \\ -0.0408 \\ -0.0394\end{array}\right\}\)

\section*{Our First FE Solution (Example 2.1) (cont’d)}
```

coord = [0 0 0.25 0.5 0.75 1];
u = [0 -0.0232 -0.0405 -0.0392 0];
plot(coord, u, 'o-b', 'LineWidth', 2)
hold
x = 0:0.01:1;
uExact = (sin(x) + 2*sin(1-x)) / sin(1) + x.*x - 2;
plot(x, uExact, 'r', 'LineWidth', 2)
grid on

```


\section*{Our First FE Solution (Example 2.1) (cont'd)}
- \(Q_{1}\) and \(Q_{5}\) values generally have physical meaning, such as heat flux or reaction force.
- After calculating PVs, these SVs can be calculated in two ways.
- First way: Use the \(1^{\text {st }}\) and \(5^{\text {th }}\) eqns of slide \(2-14\)
\[
\begin{gathered}
Q_{1}=\frac{47}{12} u_{1}-\frac{97}{24} u_{2}+\frac{1}{768}=0.0951 \\
Q_{5}=-\frac{97}{24} u_{4}+\frac{47}{12} u_{5}+\frac{27}{256}=0.2639
\end{gathered}
\]
- Second way: Use the derivatives of the FE solution at the boundaries
\[
\begin{gathered}
Q_{1}=-\left.\left(\frac{d u_{h}}{d x}\right)\right|_{x=0}=-\frac{u_{2}-u_{1}}{h^{e}}=-\frac{-0.0232-0}{0.25}=0.0928 \\
Q_{5}=\left.\left(\frac{d u_{h}}{d x}\right)\right|_{x=1}=\frac{u_{5}-u_{4}}{h^{e}}=\frac{0-(-0.0392)}{0.25}=0.1568
\end{gathered}
\]

\section*{Our First FE Solution (Example 2.1) (cont’d)}
- FEM provides very good nodal values, but what about the first derivative?
```

coord = [0 0 0.25 0.5 0.75 1];
u = [0 -0.0232 -0.0405 -0.0392 0];
for i = 1:4
slope(i) = (u(i+1)-u(i)) / 0.25;
end
figure; hold
for i = 1:4
plot([coord(i) coord(i+1)], ...
[slope(i) slope(i)], ...
'-b', 'LineWidth', 2)
end

```

```

syms x;
duExact = diff((sin(x) + 2*sin(1-x)) / sin(1) + x.*x - 2, x);
X = 0:0.01:1;
plot(X, subs(duExact,x,X), 'r', 'LineWidth', 2)
grid on

```

\section*{Remarks About Our First FEM Solution}
- The procedure is not suitable to computer programming.
- Approximation function selection must be made mesh independent.
- Symbolic integration is costly and not readily available for many prog. languages.
- Numerical integration is used in FEM codes.
- For real problems non-uniform meshes are preferred.
- Generating a good mesh is not easy. Adaptive Mesh Refinement (AMR) is helpful here.


\section*{Remarks (cont'd)}
- 2D elements can be triangular or quadrilateral.
- In 3D they can be tetrahedral, triangular prism (wedge) or hexahedral (brick).


Triangular


Quadrilateral


Tetrahedron (Pyramid)


Triangular prism
(Wedge)


Hexahedron (Brick)

\section*{Remarks (cont'd)}
- In our first FE solution we used linear (2-node) elements.
- It is possible to use higher order elements, which make use of more nodes.
- When we use quadratic (3-node) elements we can have quadratic polynomial solutions over each element.
- The following sample solution makes use of 3 quadratic elements \((N E=3)\) with a total node number of 7 ( \(N N=7\) ).


\section*{Remarks (cont'd)}
- Our first FE solution was piecewise continuous.
- It was continuous across element interfaces, however its first deriative was not.
- This is known as a \(C^{0}\) continuous solution, i.e. only the \(0^{\text {th }}\) derivative of the unknown (which is the unknown itself) is continuous.
- For \(2^{\text {nd }}\) order DEs, the weak form contains first derivative of the unknown and the use of \(C^{0}\) continuous solution is enough.
- For higher order DEs, for example the \(4^{\text {th }}\) order one used for beam bending, \(C^{0}\) continuity is not enough and a \(C^{1}\) continuous solution is necessary.
- FEM results in a sparse stiffness matrix, i.e. a matrix with lots of zero entries.
- This is due to the compact support property of the approximation functions.
- For 2D and especially for 3D problems this feature is important to decrease memory usage of the code.

\section*{Remarks (cont'd)}
- The structure of the final linear algebraic equation system depends on how we number the mesh nodes globally.
- When we do a different numbering, the final equation system does NOT change mathematically, however the [ \(K\) ] matrix changes.
- In certain linear system solution techniques \([K]\) is stored as a banded matrix and bandwidth of \([K]\) is tried to be minimized to decrease memory usage.
- Bandwith of \([K]\) is directly related to how we number the mesh nodes. Commercial FE software use bandwidth reduction algorithms to minimize the bandwidth of \([K]\).
- In the problem we solved, \([K]\) turns out to be symmetric.
- This is a due to the solved DE and the use of GFEM.
- The following DE with the additional \(1^{\text {st }}\) derivative will not result in a symmetric \([K]\).
\[
-\frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}-u=-x^{2}
\]

\section*{Remarks (cont'd)}
- The DE we solved was linear.
- For a nonlinear DE, such as the following one, an extra linearization step is necessary to obtain the system of linear algebraic equations.
\[
-u \frac{d^{2} u}{d x^{2}}-u=-x^{2}
\]```

