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Disadvantages of Ritz and MWR 

• They provide global solutions, i.e. a single approximate solution is valid over the whole 
problem domain. 

• Difficult to capture complicated 2D and 3D solutions on complex domains. 

• Not suitable to solve problems with multiple materials. 

 

• Approximation function selection is 

• problem (DE, BC, domain size) dependent. Difficult to automate. 

• practically impossible for complex 2D and 3D geometries. See the problem below. 

• NOT unique. 
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Top : Convection heat loss with ℎ, 𝑇∞ 

𝑇(𝑥, 𝑦)  = ? 
Left: 

20 oC 

Right: 
Insulated 

Bottom: Heat coming in 

Materials with two 
different conductivities 𝑥 

𝑦 



FEM vs. Ritz 

• Finite Element Method (FEM)  

• does NOT seek a global solution 

• divides the problem domain into elements of simple shapes 

• works with simple polynomial type approximate solutions over each element 

• FEM is similar to Ritz method 
• uses weak form 
• weight function selection is the same 
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𝑥 

𝑦 

𝑥 

𝑦 𝑇 

Simple shaped 
elements 

Simple, low-order 
polynomial solution 
over each element 



Our First FE Solution 

Example 2.1 Solve the following problem using FEM 
 

−
𝑑2𝑢

𝑑𝑥2
− 𝑢 = −𝑥2  ,      0 < 𝑥 < 1 

 
𝑢 0 = 0  ,  𝑢 1 = 0 

 

• This was already solved in Chapter 1. 

• Exact solution is 

 

         𝑢𝑒𝑥𝑎𝑐𝑡 =
sin 𝑥  +  2sin(1 − 𝑥)

sin(1)
+ 𝑥2 − 2 
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Exact solution of Example 2.1 

e.g. 



Our First FE Solution (Example 2.1) (cont’d) 

• This solution will be very similar to previous Ritz solutions. 

• In Chapter 3 we'll make it more algorithmic and easy to program. This will allow us to 
write our first FE code. 

 

• Following 5 node (NN = 5) and 4 element (NE = 4) mesh (grid) will be used. 

 

 

 

 

 

 

 
• This is a mesh of linear elements (elements that are defined by 2 nodes). 

• This mesh is uniform, i.e. element length ℎ𝑒 = 0.25 is constant. 
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  1               2                  3                 4                  5 

e = 1            e = 2            e = 3            e = 4 

𝑥 

Node 

Element 

ℎ𝑒 
Global node 
number 



Our First FE Solution (Example 2.1) (cont’d) 

• With linear elements we’ll obtain a piecewise linear solution 

 

 

 

 

 

 

 

 

 

• FE solution is linear over each linear element. 

• This solution is 𝐶0 continuous, i.e. it is continuous at element interfaces, but its 1st 
derivative is not. 

• 𝑢𝑗’s are the nodal unknown values. The ultimate task is to calculate them. 

• 𝑢1 and 𝑢5 are specified as EBCs. They are actually known. 
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𝑥1                𝑥2               𝑥3               𝑥4                𝑥5 

e = 1            e = 2            e = 3            e = 4 

𝑥 

𝑢ℎ : Approximate FE solution 

𝑢1 = 0 

𝑢2 

𝑢3 
𝑢4 

𝑢5 = 0 



Our First FE Solution (Example 2.1) (cont’d) 

• FE solution of the previous slide can be written as 

 

 

 

• Same form as Ritz. 

• But now unknowns are not just arbitrary numbers. They have a physical meaning, they 
are the unknown values (e.g. temperatures) at the mesh nodes. 

• In FEM 𝜙0 is not necessary. 

 

• To have a piecewise linear 𝑢ℎ each 𝜙𝑗 should be linear. 

• The above sum should provide nodal unknown values at the nodes. This is satisfied if 
the following Kronecker-Delta property holds 

𝜙𝑗 𝑥𝑖 =   
1      if    𝑖 = 𝑗
0      if    𝑖 ≠ 𝑗

     , 𝑖, 𝑗 = 1,2, … , 𝑁𝑁 
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𝑁𝑁 : Number of nodes 

𝑢𝑗 : Nodal unknowns 

𝜙𝑗(𝑥) : Approximation functions 

𝑢ℎ =  𝑢𝑗𝜙𝑗

𝑁𝑁

𝑗=1

 



Our First FE Solution (Example 2.1) (cont’d) 

• Following approximation functions will work 
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e=1       e=2      e=3      e=4 
𝑥 

1 
𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 

• These are Lagrange type 
approximation functions. 

• They make sure that the solution is 
continuous across elements, but not 
its first derivative. 

• They have Kronecker-Delta property. 

• They have local support, i.e. nonzero 
only over at most two elements. 

e=1       e=2      e=3      e=4 
𝑥 

1 

1 

1 

1 

1 

𝜙1 

𝜙2 

𝜙3 

𝜙4 

𝜙5 



Our First FE Solution (Example 2.1) (cont’d) 
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𝑢ℎ =  𝑢𝑗𝜙𝑗

𝑁𝑁

𝑗=1

 

𝑥 𝑢1 

𝑢2 

𝑢3 
𝑢4 

𝑢5 

     e=1               e=2                e=3                e=4 
𝑥 

𝑢1𝜙1 

𝑢2𝜙2 

𝑢3𝜙3 
𝑢4𝜙4 

𝑢5𝜙5 
𝑢1 = 𝑢5 

𝑢2 

𝑢4 

𝑢3 Each 𝜙𝑗 is multiplied by 𝑢𝑗  



Our First FE Solution (Example 2.1) (cont’d) 

• FEM uses weak form of the DE (same as Ritz)  (𝑢 is used instead of 𝑢ℎ for clarity) 

𝑅 = −
𝑑2𝑢

𝑑𝑥2
− 𝑢 + 𝑥2 

 

 𝑤𝑅 𝑑𝑥
1

0

 =  0       →           −𝑤
𝑑2𝑢

𝑑𝑥2
− 𝑤𝑢 + 𝑤𝑥2  𝑑𝑥

1

𝑥=0

= 0 

 

 

 

 

Weak form :        
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝑤𝑢 + 𝑤𝑥2 𝑑𝑥

1

0

− 𝑤
𝑑𝑢

𝑑𝑥
0

1

= 0 
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IBP 

 
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
𝑑𝑥

1

0

− 𝑤
𝑑𝑢

𝑑𝑥
0

1

 



Our First FE Solution (Example 2.1) (cont’d) 

• We need to write the weak form 𝑁𝑁 times with 𝑁𝑁 different 𝑤’s. 

• In Galerkin FEM (GFEM) weight function selection is the same as Ritz  

𝑤𝑖 = 𝜙𝑖     , 𝑖 = 1,2, … , 𝑁𝑁 

1st eqn  (𝑤 = 𝜙1)  :     
𝑑𝜙1

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙1𝑢 + 𝜙1𝑥

2 𝑑𝑥
1

0
  −   𝜙1 

0

𝑑𝑢

𝑑𝑥  
𝑥=1

+  𝜙1 
1

𝑑𝑢

𝑑𝑥  
𝑥=0

= 0 

2nd eqn  (𝑤 = 𝜙2)  :     
𝑑𝜙2

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙2𝑢 + 𝜙2𝑥

2 𝑑𝑥
1

0
  −   𝜙2 

0

𝑑𝑢

𝑑𝑥  
𝑥=1

+   𝜙2 
0

𝑑𝑢

𝑑𝑥  
𝑥=0

= 0 

3rd eqn  (𝑤 = 𝜙3)  :     
𝑑𝜙3

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙3𝑢 + 𝜙3𝑥

2 𝑑𝑥
1

0
  −   𝜙3 

0

𝑑𝑢

𝑑𝑥  
𝑥=1

+  𝜙3 
0

𝑑𝑢

𝑑𝑥  
𝑥=0

= 0 

4th eqn  (𝑤 = 𝜙4)  :     
𝑑𝜙4

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙4𝑢 + 𝜙4𝑥

2 𝑑𝑥
1

0
  −   𝜙4 

0

𝑑𝑢

𝑑𝑥  
𝑥=1

+  𝜙4 
0

𝑑𝑢

𝑑𝑥  
𝑥=0

= 0 

5th eqn  (𝑤 = 𝜙5)  :     
𝑑𝜙5

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙5𝑢 + 𝜙5𝑥

2 𝑑𝑥
1

0
  −   𝜙5 

1

𝑑𝑢

𝑑𝑥  
𝑥=1

  +   𝜙5 
0

𝑑𝑢

𝑑𝑥  
𝑥=0

= 0 
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Our First FE Solution (Example 2.1) (cont’d) 

• Integrals 

• are easier to evaluate over each element separately.  

• are nonzero only over certain elements 

• For example 3rd eqn’s integral is 

𝐼3 =  
𝑑𝜙3

𝑑𝑥

𝑑𝑢

𝑑𝑥
− 𝜙3𝑢 + 𝜙3𝑥

2 𝑑𝑥
1

0

 

which is nonzero only over e=2 and e=3 

because 𝜙3 is nonzero only over e=2 and e=3. 

𝐼3 =  ………… 𝑑𝑥
Ω2

+  ………… 𝑑𝑥
Ω3
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𝑤 = 𝜙3 = 4𝑥 − 1 

𝑢 =  𝑢𝑗𝜙𝑗 = 𝑢2(2 − 4𝑥) + 𝑢3(4𝑥 − 1) 

𝑤 = 𝜙3 = 3 − 4𝑥 

𝑢 =  𝑢𝑗𝜙𝑗 = 𝑢3(3 − 4𝑥) + 𝑢4(4𝑥 − 2) 

e=1       e=2      e=3      e=4 
𝑥 

1 

3 − 4𝑥 

4𝑥 − 1 

2 − 4𝑥 
4𝑥 − 2 

Simplified sum over e=2 Simplified sum over e=3 



Our First FE Solution (Example 2.1) (cont’d) 

• 𝐼3 can be evaluated in MATLAB as 

syms x u1 u2 u3 u4 u5; 

% First calculate the part of the integral over the 2nd element. 

w = 4*x-1;  % w = Phi3 and it is equal to 4x-1 over e=2. 

dwdx = diff(w, x); 

u = u2*(2-4*x) + u3*(4*x-1);  % This is what u is over e=2 

dudx = diff(u, x); 

part1 = int(dwdx*dudx - w*u + w*x^2, x, 0.25, 0.5); 

  

% Now calculate the part over the 3rd element. 

w = 3-4*x;  % w = Phi3 and it is equal to 3-4x over e=3. 

dwdx = diff(w, x); 

u = u3*(3-4*x) + u4*(4*x-2);  % This is what u is over e=3 

dudx = diff(u, x); 

part2 = int(dwdx*dudx - w*u + w*x^2, x, 0.5, 0.75); 

  

% Add two parts to get the integral of the 3rd equation. 

I3 = part1 + part2 
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Part of Example2_1.m code 



Our First FE Solution (Example 2.1) (cont’d) 
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• The result for 𝐼3 is :    

• Other integrals are calculated in Example2.1v2.m MATLAB code (see the next slide). 

• The resultant 5 equations are 

47

12
−

97

24
   

−
97

24

47

6
−

97

24
  

 −
97

24

47

6
−

97

24
 

  −
97

24

47

6
−

97

24

   −
97

24

47

12

 

𝑢1

 
𝑢2

 
𝑢3

 
𝑢4

 
𝑢5

 =  

−
1

768

−
7

384

−
25

384

−
55

384

−
27

256

 + 

−
𝑑𝑢

𝑑𝑥
 
𝑥=0 

0
 
0
 
0
 

𝑑𝑢

𝑑𝑥
 
𝑥=1

 

𝑄1 

𝑄5 

[𝐾] {𝑢} {𝐹} {𝑄} 

−
97

24
𝑢2 +

47

6
𝑢3 −

97

24
𝑢4 +

25

384
 



Our First FE Solution (Example 2.1) (cont’d) 
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syms x u1 u2 u3 u4 u5 Phi I; 

% Phi(i,j) is the i-th approx. funct. over element j 

Phi(1,1) = 1-4*x; 

Phi(2,1) = 4*x;     Phi(2,2) = 2-4*x; 

Phi(3,2) = 4*x-1;   Phi(3,3) = 3-4*x; 

Phi(4,3) = 4*x-2;   Phi(4,4) = 4-4*x; 

Phi(5,4) = 4*x-3; 

 

coord = [0, 0.25, 0.5, 0.75, 1]; 

 

for i=1:5       % Integral loop 

   I(i) = 0;    % Initialize the i-th integral to zero. 

   for e=1:4    % Element loop 

      w = Phi(i,e); 

      dwdx = diff(w, x); 

       

      u = u1*Phi(1,e) + u2*Phi(2,e) + u3*Phi(3,e) + u4*Phi(4,e) + u5*Phi(5,e); 

      dudx = diff(u, x); 

       

      I(i) = I(i) + int(dwdx*dudx - w*u + w*x^2, x, coord(e), coord(e+1)); 

   end 

end 

Example2_1v2.m code 
(2nd & simpler version) 



Our First FE Solution (Example 2.1) (cont’d) 
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𝐾 𝑢 = 𝐹 + 𝑄  

 

 

 

 

 

• This system has 5 equations for 5 unknowns. 

• 𝑢1 and 𝑢5 are known, but 𝑄1 and 𝑄5 are unknown. 

• As a rule, if the PV is known at a boundary, corresponding SV is unknown, and vice 
versa. 

• Note that 𝑄1 includes a minus sign, which can be thought as an indicator for boundary 
normal direction. 

• At 𝑥 = 0, boundary outward normal is in – 𝑥 direction    →     𝑄1 = −
𝑑𝑢

𝑑𝑥 𝑥=0
  

• At 𝑥 = 1, boundary outward normal is in +𝑥 direction    →     𝑄5 = +
𝑑𝑢

𝑑𝑥 𝑥=1
  

Stiffness matrix 
𝑁𝑁 × 𝑁𝑁 

Nodal unknown 
vector 
𝑁𝑁 × 1 

Force vector 
𝑁𝑁 × 1 

Boundary term 
vector 
𝑁𝑁 × 1 



Our First FE Solution (Example 2.1) (cont’d) 
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• In practice we first want to solve for the unknown 𝑢’s, but not 𝑄’s. 

• For this we apply reduction to the 𝑁𝑁 × 𝑁𝑁 system and drop the 1st and 5th 
equations, because 𝑢1 and 𝑢5 are known. 

 

𝐾11 𝐾12 𝐾13 𝐾14 𝐾15

𝐾21 𝐾22 𝐾23 𝐾24 𝐾25

𝐾31 𝐾32 𝐾33 𝐾34 𝐾25

𝐾41 𝐾42 𝐾43 𝐾44 𝐾45

𝐾51 𝐾52 𝐾53 𝐾54 𝐾55

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

=

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

+

𝑄1

𝑄2

𝑄3

𝑄4

𝑄5

 

• The reduced system is 3x3 

𝐾22 𝐾23 𝐾24

𝐾32 𝐾33 𝐾34

𝐾42 𝐾43 𝐾44

𝑢2

𝑢3

𝑢4

=

𝐹2 − 𝐾21𝑢1 − 𝐾25𝑢5

𝐹3 − 𝐾31𝑢1 − 𝐾35𝑢5

𝐹4 − 𝐾41𝑢1 − 𝐾45𝑢5

 + 
𝑄2

𝑄3

𝑄4

 



Our First FE Solution (Example 2.1) (cont’d) 
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• Reduced system for this problem is 

47

6
−

97

24
0

−
97

24

47

6
−

97

24

0 −
97

24

47

6

 

 
𝑢2

 
𝑢3

 
𝑢4

 

 =  

−
7

384
  − 0 − 0

−
25

384
  − 0 − 0

−
55

384
  − 0 − 0

    +  

 
0
 
0
 
0
 

 

• Solving this system gives    

𝑢2

𝑢3

𝑢4

=
−0.0232
−0.0405
−0.0392

 

• Exact values are    

𝑢2

𝑢3

𝑢4 𝑒𝑥𝑎𝑐𝑡

=
−0.0234
−0.0408
−0.0394

 

 

Because 
𝑢1 = 0 
𝑢5 = 0 



Our First FE Solution (Example 2.1) (cont’d) 
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4 element FE solution 
vs. 
exact solution 

coord = [0 0.25 0.5 0.75 1]; 

u = [0 -0.0232 -0.0405 -0.0392 0]; 

plot(coord, u, 'o-b', 'LineWidth', 2) 

hold 

x = 0:0.01:1; 

uExact = (sin(x) + 2*sin(1-x)) / sin(1) + x.*x - 2; 

plot(x, uExact, 'r', 'LineWidth', 2) 

grid on 

 

 

0 0.25 0.5 0.75 1
-0.05

-0.04

-0.03

-0.02

-0.01

0

 

 

FEM

Exact



Our First FE Solution (Example 2.1) (cont’d) 

2-20 METU  –  Dept. of Mechanical Engineering  –  ME 413 Int. to Finite Element Analysis  –  Lecture Notes of Dr. Sert 

• 𝑄1 and 𝑄5 values generally have physical meaning, such as heat flux or reaction force. 

• After calculating PVs, these SVs can be calculated in two ways. 
 

• First way :  Use the 1st and 5th eqns of slide 2-14 

𝑄1 =
47

12
𝑢1 −

97

24
𝑢2 +

1

768
= 0.0951 

 

𝑄5 = −
97

24
𝑢4 +

47

12
𝑢5 +

27

256
= 0.2639 

• Second way :  Use the derivatives of the FE solution at the boundaries 

𝑄1 = −
𝑑𝑢ℎ

𝑑𝑥
 
𝑥=0

= −
𝑢2 − 𝑢1

ℎ𝑒
= −

−0.0232 − 0

0.25
= 0.0928 

 

𝑄5 =
𝑑𝑢ℎ

𝑑𝑥
 
𝑥=1

=
𝑢5 − 𝑢4

ℎ𝑒
=

0 − (−0.0392)

0.25
= 0.1568 

 

 

 

 

Good match 

No match 
Why? 

Which one is better? 



Our First FE Solution (Example 2.1) (cont’d) 
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• FEM provides very good nodal values, but what about the first derivative? 

 
coord = [0 0.25 0.5 0.75 1]; 

u = [0 -0.0232 -0.0405 -0.0392 0]; 

for i = 1:4 

   slope(i) = (u(i+1)-u(i)) / 0.25; 

end 

figure; hold 

for i = 1:4 

   plot([coord(i) coord(i+1)], ... 

        [slope(i) slope(i)], ... 

        '-b', 'LineWidth', 2) 

end 

syms x; 

duExact = diff((sin(x) + 2*sin(1-x)) / sin(1) + x.*x - 2, x); 

X = 0:0.01:1; 

plot(X, subs(duExact,x,X), 'r', 'LineWidth', 2) 

grid on 

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

 

 
1st derivative comparison 



Remarks About Our First FEM Solution 
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• The procedure is not suitable to computer programming. 

• Approximation function selection must be made mesh independent. 

• Symbolic integration is costly and not readily available for many prog. languages. 

• Numerical integration is used in FEM codes. 

• For real problems non-uniform meshes are preferred. 

• Generating a good mesh is not easy. Adaptive Mesh Refinement (AMR) is helpful here. 

 

𝑥 

Smaller elements 
(finer mesh) in 
high gradient 
regions 

𝑢𝑒𝑥𝑎𝑐𝑡 

Larger elements 
(coarser mesh) in 

low gradient 
regions 
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• 2D elements can be triangular or quadrilateral. 

• In 3D they can be tetrahedral, triangular prism (wedge) or hexahedral (brick). 

 Triangular             Quadrilateral               Tetrahedron               Triangular prism           Hexahedron 
                                                                   (Pyramid)                        (Wedge)                       (Brick) 
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• In our first FE solution we used linear (2-node) elements. 

• It is possible to use higher order elements, which make use of more nodes. 

• When we use quadratic (3-node) elements we can have quadratic polynomial solutions 
over each element. 

• The following sample solution makes use of 3 quadratic elements (𝑁𝐸 = 3) with a 
total node number of 7 (𝑁𝑁 = 7). 

𝑢5 
𝑢3 

e=1 
𝑥 

e=2 e=3 

𝑢1 

𝑢4 
𝑢2 

𝑢6 

𝑢7 
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• Our first FE solution was piecewise continuous. 

• It was continuous across element interfaces, however its first deriative was not. 

• This is known as a 𝐶0 continuous solution, i.e. only the 0th derivative of the unknown 
(which is the unknown itself) is continuous. 

• For 2nd order DEs, the weak form contains first derivative of the unknown and the use 
of 𝐶0 continuous solution is enough. 

• For higher order DEs, for example the 4th order one used for beam bending,                 
𝐶0 continuity is not enough and a 𝐶1 continuous solution is necessary. 

 

• FEM results in a sparse stiffness matrix, i.e. a matrix with lots of zero entries. 

• This is due to the compact support property of the approximation functions. 

• For 2D and especially for 3D problems this feature is important to decrease memory 
usage of the code. 
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• The structure of the final linear algebraic equation system depends on how  we 
number the mesh nodes globally. 

• When we do a different numbering, the final equation system does NOT change 
mathematically, however the [𝐾] matrix changes. 

• In certain linear system solution techniques [𝐾] is stored as a banded matrix and 
bandwidth of [𝐾] is tried to be minimized to decrease memory usage. 

• Bandwith of 𝐾  is directly related to how we number the mesh nodes. Commercial 
FE software use bandwidth reduction algorithms to minimize the bandwidth of [𝐾]. 

 

• In the problem we solved, [𝐾] turns out to be symmetric. 

• This is a due to the solved DE and the use of GFEM. 

• The following DE with the additional 1st derivative will not result in a symmetric [𝐾]. 

−
𝑑2𝑢

𝑑𝑥2
+

𝑑𝑢

𝑑𝑥
− 𝑢 = −𝑥2 
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• The DE we solved was linear. 

• For a nonlinear DE, such as the following one, an extra linearization step is necessary 
to obtain the system of linear algebraic equations. 

−𝑢
𝑑2𝑢

𝑑𝑥2
− 𝑢 = −𝑥2 


